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Abstract. In this paper we consider a type-I superconducting film modeled by the Ginzburg-Landau model,
confined between two parallel planes a distance L apart from one another. Our approach is based on the
Gaussian effective potential in the transverse unitarity gauge, which allows to treat gauge contributions
in a compact form. Using techniques from dimensional and ζ-function regularizations, modified by the
confinement conditions, we investigate the critical temperature as a function of the film thickness L. The
contributions from the scalar self-interaction and from the gauge fluctuations are clearly identified. The
model suggests the existence of a minimal critical thickness below which superconductivity is suppressed.
A comparison with present experimental observations is done.

PACS. 74.20.-z Theories and models of superconducting state – 11.15.Ex Spontaneous breaking of gauge
symmetries – 05.10.Cc Renormalization group methods

1 Introduction

It is currently assumed to be a good approxima-
tion to neglect magnetic thermal fluctuations in the
Ginzburg-Landau (GL) model, to explore general features
of superconducting transitions. However, this approxima-
tion excludes the study of the so called charged phase tran-
sitions. They only can be investigated when fluctuations of
the gauge field are taken into account, which make explic-
itly appear in the thermodynamic quantities the coupling
constant for the interaction between the scalar field and
the gauge field (the charge of the boson). This is a hard
problem to be directly faced and many attempts have been
done to go beyond the pioneering work of reference [1]. In
what concerns physical situations already present in the
literature, a large amount of work has been done on the
GL model applied to the study of superconductors, both
in the single component and in the N -component versions
of the model, using the renormalization group approach.
The interested reader can find an account on the state of
the subject for both type-I and type-II superconductors
and related topics in references [2–7].

Also, in the last three decades both theoretical and
experimental works have been done on the superconduct-
ing properties of thin films [8–20]. An interesting result
emerging from these works is that the superconducting
transition temperature Tc is reduced as the film thickness
is decreased.

Besides, effects of spatial boundaries on the behaviour
of physical systems appear in several forms in the litera-
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ture. At the level of effective field theories, in many cases,
boundaries can be modeled by considering for instance a
Dirac fermionic field whose mass changes sign as it crosses
the defect, which means that the domain wall can be inter-
preted as a kind of a critical boundary [21,22]. Questions
concerning stability and the existence of phase transitions
may also be raised if we enquire about the behaviour of
field theories as function of spatial boundaries. The exis-
tence of phase transitions would be, in this case, also asso-
ciated to some spatial parameters describing the breaking
of translational invariance, in our case the distance L be-
tween planes confining the system (a superconducting film
of thickness L). In particular the question of how the su-
perconducting critical temperature could depend on the
thickness of the film can be raised.

In this paper, we intend to study superconducting films
within a field theory framework. We consider the GL the-
ory, the system being submitted to the constraint of con-
finement between two parallel planes a distance L apart
from one another. From a physical point of view, for di-
mension d = 3 and introducing temperature by means of
the mass term in the Hamiltonian, this corresponds to a
film-like material. We investigate the behaviour of the sys-
tem taking into account gauge fluctuations, which means
that charged transitions are included in our work. We are
particularly interested in the problem of how the critical
behaviour depends on the film thickness L. This study is
done by means of the Gaussian Effective Potential (GEP)
as developed in references [23–27], together with a spatial
compactification mechanism introduced in recent publica-
tions [28,29].
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In the next section, we apply the functional approach
of the Gaussian Effective Potential formalism to the
Ginzburg-Landau model, obtaining the mass, which obeys
a generalized “Gaussian” Dyson-Schwinger equation. In
Section 3, we extend the formalism of Section 2 to the
GL model confined between two parallel planes, and we
study the critical behaviour of the system. In particular,
we obtain an expression for the critical temperature as
a function of the spacing between the planes (the film
thickness). A qualitative and quantitative comparison of
our results with experimental data is done in Section 4.
Finally, we summarize our results in Section 5.

Unless explicitly stated we use all along the paper Nat-
ural Units (NU), � = c = kB = 1. Also our nomenclature,
notations and conventions are those usual in the quan-
tum field theoretical approach to critical phenomena [2–7].
These choices are not the usual ones in solid state physics,
but are the more appropriate for our purposes.

2 The Gaussian effective potential
for the Ginzburg-Landau model

We begin by briefly presenting the study of the U(1) Scalar
Electrodynamics in the transverse unitarity gauge, along
the lines developed in reference [27]. We start from the
Hamiltonian density of the GL model in Euclidean d-
dimensional space (recall we are in NU) written in the
form [30],

H′ =
1
4
FµνFµν +

1
2
|(∂µ − ieAµ)Ψ |2

+
1
2
m2

0|Ψ |2 + λ(|Ψ |2)2, (1)

where Ψ is a complex field, and m0 is the bare mass.
The components of the transverse magnetic field, Fµν =
∂µAν − ∂νAµ (µ, ν = 1, ..., d) are related to the d-
dimensional potential vector by the well known equation,

1
2
FµνFµν = |∇ × A|2. (2)

In order to obtain only physical degrees of freedom, we can
introduce two real fields instead of the complex field Ψ ,
assuming a transverse unitarity gauge. We can define the
field in terms of two real fields, as Ψ = φeiγ , together with
the gauge transformation A → A − 1/e∇γ. The unitar-
ity gauge makes the original transverse field to acquire
a longitudinal component AL proportional to ∇γ. Then
the original functional integration over Ψ and Ψ∗ in the
generating functional of correlation functions, becomes an
integration over φ, AT and AL. The longitudinal compo-
nent of the vector potential can be integrated out, leading
to the generating functional (up to constant terms),

Z[j] =
∫

Dφ DAT exp
[
−
∫

ddxH +
∫

ddx jφ

]
, (3)

where the Hamiltonian is

H =
1
2
(∇φ)2 +

1
2
m2

0φ
2 + λφ4

+
1
2
e2φ2A2 +

1
2
(∇× A)2 +

1
2ε

(∇ · A)2. (4)

We have introduced above a gauge fixing term, the limit
ε → 0 being taken later on after the calculations have been
done. In equation (4) and in what follows, unless explicitly
stated, A stands for the transverse gauge field.

The Gaussian effective potential can be obtained from
equation (4), performing a shift in the scalar field in the
form φ = φ̃ + ϕ, which allows to write the Hamiltonian in
the form

H = H0 + Hint, (5)

with H0 being the free part and Hint the interaction part,
given respectively by

H0 =
[
1
2
(∇φ̃)2 +

1
2
Ω2φ̃2

]

+
[
1
2
(∇× A)2 +

1
2
∆2AµAµ +

1
2ε

(∇ ·A)2
]

, (6)

and

Hint =
4∑

n=0

vnφ̃n +
1
2
(
e2ϕ2 − ∆2

)
AµAµ

+
1
2
e2φ̃AµAµϕ +

1
2
e2AµAµϕ2, (7)

where

v0 =
1
2
m2

0ϕ
2 + λϕ4, (8)

v1 = m2
0ϕ + 4λϕ3, (9)

v2 =
1
2
m2

0ϕ
2 + 6λϕ2 − 1

2
Ω2, (10)

v3 = 4λϕ, (11)
v4 = λ. (12)

It is clear from equations (5, 6) and (7), that H describes
two interacting fields, a real scalar field φ of mass Ω and
a real vector gauge field A of mass ∆.

The effective potential, which is defined by

Veff [ϕ] =
1
V

[
− ln Z +

∫
ddxjϕ

]
, (13)

where V is the total volume, can be obtained at first order
from standard methods from perturbation theory. One can
find, from equations (3, 6) and (7),

Veff [ϕ] = Id
1 (Ω) + 2Id

1 (∆) +
1
2
m2

0ϕ
2 + λϕ4

+
1
2
[
m2

0 − Ω2 + 12λϕ2 + 6λId
0 (Ω)

]
Id
0 (Ω)

+
[
e2
(
ϕ2 + Id

0 (Ω)
) − ∆2

]
Id
0 (∆), (14)
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where,

Id
0 (M) =

∫
ddk

(2π)d

1
k2 + M2

, (15)

Id
1 (M) =

1
2

∫
ddk

(2π)d
ln(k2 + M2), (16)

with k = (k1, ..., kd) being the d-dimensional momentum.
The Gaussian effective potential is derived by the re-

quirement that Veff [ϕ] must be stationary under varia-
tions of the masses ∆ and Ω. This means that values Ω
and ∆ for the masses Ω and ∆ should be found such that
the conditions,

∂Veff

∂Ω2

∣∣∣∣
Ω2=Ω

2
= 0, (17)

∂Veff

∂∆2

∣∣∣∣
∆2=∆

2
= 0, (18)

be simultaneously satisfied. These conditions generate the
gap equations,

Ω
2

= m2
0 + 12λϕ2 + 12λId

0 (Ω) + 2e2Id
0 (∆), (19)

∆
2

= e2ϕ2 + e2Id
0 (Ω). (20)

Replacing Ω and ∆ in equation (14) by the solutions Ω
and ∆, of equations (19, 20) we obtain for the GEP the
formal expression,

V eff [ϕ] = Id
1 (Ω) + 2Id

1 (∆) +
1
2
m2

0ϕ
2 + λϕ4

− 3λ[Id
0 (Ω)]2 − e2Id

0 (Ω)Id
0 (∆). (21)

Notice that equations (19, 20) are a pair of coupled equa-
tions, which can be solved by numerical methods. Never-
theless we do not need to go through the numeric solution
as we are interested in the limit of criticality.

Next we intend to write an expression for the Gaussian
mass, m, obtained in our case from the standard prescrip-
tion, as the second derivative of the Gaussian effective
potential for ϕ = 0, since we shall be interested in the
unbroken phase (i.e. T ≥ Tc). To calculate the second
derivative of V eff with respect to ϕ, we remark from equa-
tions (19, 20) that Ω

2
and ∆

2
also depend on ϕ according

to the relations

dΩ
2

dϕ
=

24λϕ − e2Id−1(∆)d∆
2

dϕ

1 + 6λId
−1(Ω)

, (22)

d∆
2

dϕ
= 2e2ϕ − 1

2
e2Id

−1(∆)
dΩ

2

dϕ
, (23)

where

Id
−1(M) = 2

∫
ddk

(2π)d

1
(k2 + M2)2

. (24)

Replacing equation (23) in (22) we get,

dΩ
2

dϕ
=

[
24λ − 2e4Id

−1(∆)
]
ϕ

1 +
[
6λ − 1

2e4Id
−1(Ω)

]
Id
−1(Ω)

, (25)

and the second derivative of the GEP with respect to ϕ is
given by,

d2V eff

dϕ2
= m2

0 + 12λϕ2

+ 12λId
0 (Ω) + 2e2Id

0 (∆) + 2e4ϕ2Id
−1(∆)

−
[
6λ + 1

2e4Id
−1(∆)

] [
24λ − 2e4Id

−1(∆)
]
ϕ2

1 +
[
6λ − 1

2e4I−1(Ω)
]
Id−1(Ω)

.

(26)

Thus we have the formula for the Gaussian mass,

m2 ≡ d2Veff

dϕ2

∣∣∣∣
ϕ=0

= m2
0 + 12λId

0 (Ω0) + 2e2Id
0 (∆0), (27)

where Ω0 and ∆0 are respectively solutions for Ω and ∆
at ϕ = 0, explicitly,

Ω
2

0 = m2
0 + 12λId

0 (Ω0) + 2e2Id
0 (∆0), (28)

∆
2

0 = e2Id
0 (Ω0). (29)

Therefore, from equations (27, 28) we get simply,

m2 = Ω
2

0. (30)

Hence, we see from the gap equation (27) that the
Gaussian mass obeys a generalized “Gaussian” Dyson-
Schwinger equation,

m2 = m2
0 + 12λId

0 (m) + 2e2Id
0

(√
e2Id

0 (m)
)

. (31)

This expression will be used later to describe the system
in the neighbourhood of criticality. We also notice that
along the lines of [23] we can use equations (27, 28) in
order to eliminate m0 from the gap equations (19, 20)
getting the following expression for the gap equation, in
the three dimensional case,

(x − 1) + kL1(x) − kΦ2 = −qL1(y). (32)

In the above equation we have used the following defi-
nitions: Φ2 = 4πφ2

m , x = Ω
2

m2 , y = ∆
2

∆0
2 , k = 3 λ

πm , q = e2∆0
2πm ,

mL1(x)
4π = I0(m) − I0(Ω) and ∆0L1(y)

4π = I0(∆0) − I0(∆).
For the three dimensional case L1(x) =

√
x − 1 which, as

in the scalar case [23], allows an explicit solution of equa-
tion (32).

In Figures 1, 2 and 3 we illustrate the relation given
by equation (32) between x and y, keeping in each figure
some kind of constraints for the parameters k, q and Φ.
In Figure 1, q and Φ are set to 1, while y is evaluated at
different values. It is obtained calculating x for each given
value of y, and it can be interpreted as a kind of a level
curve in the “normalized mass space”. Since we have inter-
est in non-negative mass solutions of equation (32), notice
that the positivity of solutions happens when k increases
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Fig. 1. Plot of x×y related in the gap equation written in the
form of equation (32), with different values of k. q and Φ are
set to 1.

Fig. 2. Plot of x×y related in the gap equation written in the
form of equation (32), with different values of q. k and Φ are
set to 1.

and is also non-negative. This fact suggests the confirma-
tion that the coupling constant must be positive-definite.
An analogous procedure is done in Figure 2, in which k
and Φ are 1. We see that when q tends to zero, we restore
the scalar field gap equation. It can be produced in two
ways: by the absence of the gauge field (e = 0) or the null
solution of the gap equation of the gauge field, ∆0. On the
other hand, the increasing of q forces x to exist in both

Fig. 3. Plot of x×y related in the gap equation written in the
form of equation (32), with different values of Φ. k and q are
set to 1.

positive and negative region. Figure 3 is considered here
for completeness, in which k and q are taken to 1. We
observe that the non-negative values of Φ do not cause
qualitative changes. This particular case of Φ is the only
one that we regard here, since we work on the unbroken
phase.

In the next section we can analyze in detail this model
at the critical region, in which Ω is approximately zero,
taking into account also its confinement.

3 Critical behaviour of the confined
Ginzburg-Landau model

3.1 The effect of confinement

Let us now consider the system confined between two par-
allel planes, normal to the xd-axis, a distance L apart from
one another and use Cartesian coordinates r = (xd, z),
where z is a (d − 1)-dimensional vector, with correspond-
ing momenta k = (kd,q), q being a (d − 1) -dimensional
vector in momenta space. In this case, the model is sup-
posed to describe a superconducting material in the form
of a film. Under these conditions the field φ(xd, z) satis-
fies the condition of confinement along the xd-axis, ϕ(xd =
0, z) = ϕ(xd = L, z) = const., and should have a mixed
series-integral Fourier expansion of the form,

φ(xd, z) =
∞∑

n=−∞
cn

∫
dd−1q b(q)e−iωnxd −iq·zϕ̃(ωn,q),

(33)
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where ωn = 2πn/L and the coefficients cn and b(q) cor-
respond respectively to the Fourier series representation
over xd and to the Fourier integral representation over
the (d − 1)-dimensional z-space. The above conditions of
confinement of the xd-dependence of the field to a seg-
ment of length L, allow us to proceed with respect to the
xd-coordinate, in a manner analogous as it is done in the
imaginary-time Matsubara formalism in field theory. The
Feynman rules should be modified following the prescrip-
tion,

∫
dkd

2π
→ 1

L

+∞∑
n=−∞

, kd → 2nπ

L
≡ ωn. (34)

We emphasize however, that here we are considering an
Euclidean field theory in d purely spatial dimensions, we
are not working in the framework of finite temperature
field theory. Temperature is introduced in the mass term of
the Hamiltonian by means of the usual Ginzburg-Landau
prescription.

For our purposes we only need the calculation of the
integral given in equation (15) in the situation of confine-
ment of the present section. With the prescription (34),
the equation corresponding to equation (15) for the con-
fined system can be written in the form,

Id
0 (M) =

1
4π2L

+∞∑
n=−∞

∫
dd−1q

q2 + an2 + c2
, (35)

where qi = ki/2π, a = 1/L2 and c2 = M2/4π2.
Equation (35) can be treated within the framework

of the formalism developed in references [28,29]. Using
a well known regularization formula [31], we can write
equation (35) in the form

Id
0 (M) =

√
a

4π2−d/2
Γ

(
2 − d

2

)
Ac2

1

(
3 − d

2
, a

)
, (36)

where Ac2

1

(
3−d
2 , a

)
is one of the Epstein-Hurwitz zeta-

functions, defined by [32]

Ac2

K (ν; {ai}) =
+∞∑

n1,...,nK=−∞
(a1n

2
1 + ... + aKn2

K + c2)−ν ,

(37)
with Re(ν) > K/2 (in our case Re(d) < 2). The
Epstein-Hurwitz zeta-function can be extended as a mero-
morphic function to the whole complex ν-plane (for us, to
all values of the dimension d), and we obtain after some
rather long but straightforward manipulations described
in detail in [28], the expression,

Id
0 (M) = 2−

d
2 π1− d

2

[
21−d

2 Γ

(
1 − d

2

)
M−2+d

+ 2
∞∑

n=1

(
M

nL

)−1+ d
2

K−1+ d
2
(MLn)

]
, (38)

where Kν are the Bessel functions of third kind.

3.2 Critical behaviour

Now we are able to analyze the critical behaviour of the
system under consideration. It is important to say that
in this context we will deal with the system obeying the
following condition [18]:

ξ(T ) ≡ m −1 � λ(T ) � L, (39)

where ξ(T ) and λ(T ) are the GL correlation and penetra-
tion lengths, defined by

ξ(T ) =
ξ0

|t|1/2
, λ(T ) =

λ0

|t|1/2
; t =

T − Tc

Tc
, (40)

being Tc the transition temperature of the film, ξ0 and
λ0 the intrinsic coherence and penetration length, respec-
tively (see next section). Therefore, here we will work
only with type-I superconducting films, because equa-
tion (39) holds for type-I materials at the neighborhood of
the criticality. Thus, we restrict our study to the normal-
supercontucting state transition, in which the last state
obeys the Meissner law.

After that, now we can take M = m in equation (38)
and let us restrict ourselves to the neighbourhood of crit-
icality, that is, to the region defined by m ≈ 0. Then the
asymptotic formula,

Kν(z) ≈ 1
2
Γ (ν)

(z

2

)−ν

, (z ∼ 0) (41)

allows to write equation (38) in the form

Id
0 (m ≈ 0) ≈ π1− d

2

2
Γ

(
1 − d

2

)
1

Ld−2
ζ(d − 2), (42)

where ζ(d − 2) is the Riemann zeta-function, ζ(d − 2) =∑∞
n=1(1/nd−2), defined for d > 3. For d � 3, in the sense

of the analytic continuation in dimension of ζ-functions,
we obtain the expression,

Id
0 (m ≈ 0) ≈ 1

2
√

π

1
L

ζ(d − 2). (43)

The integral Id
0

(
∆0 =

√
e2Id

0 (m)
)
, which enters equa-

tion (31), must be considered carefully. For a dimension
d � 3, we get,

Id
0 (∆0) ≈ 2−

3
2 π− 1

2

[
2−

1
2 Γ

(
−1

2

)
∆0

+ 2
∞∑

n=1

(
∆0

nL

) 1
2

K 1
2
(∆0Ln)

]
, (44)

or, using the exact expression for the summation in the
above equation,

∞∑
n=1

(
∆0

nL

) 1
2

K 1
2
(∆0Ln) = −

√
π

2
1
L

ln
(
1 − e−∆0L

)
,

(45)
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Equation (44) becomes (with ∆0 =
√

e2Id
0 (m))

Id
0

(√
e2Id

0 (m)
)

≈ 1
2
√

π

[
1√
2
Γ

(
−1

2

)√
e2Id

0 (m)

−
√

2π
1
L

ln
(
1 − e−

√
e2Id

0 (m)L
)]

. (46)

However, notice that if the are in the limit m ≈ 0, we see
replacing Id

0 (m) from equation (43) in the exponential,
that the logarithm in the last term of equation (46) will
disappear at d = 3, due to the divergence of ζ(d − 2)
as d → 3. Hence, equation (46) becomes simply, for a
dimension d � 3,

Id
0

(√
e2Id

0 (m ≈ 0)
)

≈ e

2π1/4
√

2
1

L
1
2
ζ

1
2 (d − 2). (47)

Thus we can write the Gaussian gap equation (31) in the
neighbourhood of criticality in the form,

m2 ≈ m2
0+

24√
π

λ
1
L

ζ(d−2)− 1
π1/4

√
2
e3 1

L
1
2
ζ

1
2 (d−2). (48)

For m = 0, equation (48) defines a critical equation for
d � 3. But it is well known that the only singularity of
the zeta-function ζ(z) is a pole at z = 1, which makes
equation (48) meaningless as it stands for d = 3, just the
physically interesting situation.

However, we can give a physical sense to equation (48)
for d = 3, by means of a renormalization procedure. This
can be done using the formula,

lim
z→1

[
ζ(z) − 1

1 − z

]
= γ, (49)

where γ is the Euler constant, to define for d � 3 a new,
renormalized mass m, related to the former bare mass by,

m2 = m2
0 −

24λ√
πL(d − 3)

+
e3

2π1/4
√

2L

∞∑
p=1

Cp
1
2
γ

1
2−p (−1)p

(d − 3)p
, (50)

where Cp
1
2

are appropriate generalizations of the coeffi-
cients of the binomial expansion for a fractional power,
notice that substracting this pole preserves the sign be-
haviour with the temperature of the φ2 coefficient in equa-
tion (4), a similar procedure has been done in a more
implicit way for the finite temperature Gaussian effec-
tive potential [25]. Then replacing the above equation in
equation (48) and using the binomial formula to expand
ζ1/2(d − 2) ≈ [γ − (1/(d − 3)]1/2 we obtain, for d = 3,

m2 ≈ m2 +
24γλ√

π

1
L

− e3

π1/4
√

2
γ

1
2

L
1
2
. (51)

Taking m2 = a(T/T0 − 1), with a > 0 we have from the
above equation for m2 = 0, the critical temperature as a

function of the film thickness L and of the bulk transition
temperature, T0,

Tc(L) = T0

[
1 − 24γλ

a
√

π

1
L

+
e3√γ

aπ1/4
√

2
1√
L

]
. (52)

This equation describes the behaviour of the critical tem-
perature of a type-I superconducting film as a function of
its thickness L, taking into account the gauge fluctuations.
Of course when L → ∞, we recover the critical temper-
ature of the material in bulk form. We see clearly two
separated contributions in the expression for the critical
temperature in equation (52). The first one due to the self-
interaction of the scalar field, and the other coming from
the interaction between the scalar and gauge fields. This
last one would characterize a phase transition consider-
ing the intrinsic magnetic fluctuations due to the Cooper
pairs. It should be noticed that the self interaction contri-
bution to the critical temperature depends on the inverse
of the film thickness, while the charged contribution goes
with the inverse of the square root of L.

From equation (52) we see that the transition temper-
ature vanishes for a value of L given by,

L(0) =

[√
γ

2
√

π

e3

2a
−
(

γe6

8a2
√

π
+

24γλ

a
√

π

) 1
2
]2

. (53)

For L < L(0), the critical temperature (in absolute units)
becomes negative, which means that L(0) is the minimal
physically allowed film thickness, below which the super-
conducting transition is suppressed.

4 Comparison with experimental results

Our approach, based only on the GL model, gives a func-
tional form for the decrease of the transition temperature
with the inverse film thickness which agrees qualitatively
with experimental observations [9–13,15–17]. These ex-
perimental results exhibit a linear decrease of the critical
temperature with the inverse of the film thickness for sev-
eral kinds of materials. Also we have obtained a minimal
film thickness below which the critical temperature be-
comes negative. This can be interpreted as the minimal
film thickness below which the transition is suppressed in
the context of the GL model. It gives a limit of validity
for Tc(L) in equation (52) in the context of the proposed
model. Moreover, equation (39) restricts our model to the
type-I superconducting films. In particular we can not see
any overlap with a two-dimensional Kosterlitz-Thouless
transition, due to the presence of the gauge field fluctu-
ations (in addition to the restriction of looking at only
type-I materials).

In order to compare more precisely our results with ex-
perimental ones, we still need to estimate the magnitude
of L(0) for films made of a particular material. For that
we start showing the compatibility of the quantities of our
field theoretical model with the phenomenological param-
eters. In equation (52), the parameters λ (coupling con-
stant of the φ4 term) and e2 (squared charge accounting
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for effects due to gauge fluctuations) have mass dimension,
and a has squared mass dimension (let us remind that we
have used in Natural Units, c = � = kB = 1). To proceed,
we shall restore the SI units, according to reference [30]: we
remember that a factor 1/kBT0 is implicit in the exponent
of equation (3) and we rescale the fields and coordinates
by φ → φnew =

√
ξ0/kBT0φ, A → Anew =

√
ξ0/kBT0A

and x → xnew = x/ξ0, with ξ0 = 0.18�vF /kBT0, being
the intrinsic coherence length (vF is the Fermi velocity).
Therefore a, λ and e become dimensionless, in such a way
that we have these parameters related to the well known 3-
dimensional phenomenological Ginzburg-Landau parame-
ters a, g and q by [30]

a = 1, λ ≈ 111.08
(

T0

TF

)2

, e ≈ 2.59
√

αvF

c
, (54)

where TF and α are respectively the Fermi temperature
and the fine structure constant. To take into account these
changes, the thickness L in equation (52) must be rescaled
by L → Lnew = L/ξ0. Thus, the replacement of equa-
tions (54) in (52) and (53) yields the critical temperature
and the minimal thickness in terms of parameters directly
related to the characteristic quantities of materials.

Notice, however, that we have considered a perfect
film, without impurities. If we consider that the type-I
film contain impurities, the intrinsic coherence length and
the coupling constants must be changed. Then they be-
come ξ0 → r1/2ξ0, λ → 2r−3/2λ and e → r1/4e, where
r ∼ 0.18C−1, with C = ξ0/l, l being the mean free path
of the electron. The existence of the factor 2 in λ will be
discussed later. The expression for r is valid in the limit
of ξ0 reasonably greater than l. It is also worth to note
that we will regard that the impurities in the film are not
sufficient to remove it from the type-I region, i.e. the film
is made of a type-I material in a such way that it is not
quite dirty to put it in the type-II limit. Hence, it continues
having a usual normal-superconducting phase transition.
Thus, equation (52) is rewritten as

Tc = T0


1 − 9646.2Cξ0t

2
0F

L
+

7.87 × 10−4
(
ξ0v

3
Fc

) 1
2

C
√

L


 ,

(55)
where t0F = T0/TF and vFc = vF /c. In the same way,
which the assumptions given above, equation (53) be-
comes

L(0) = ξ0

(
3.94 × 10−4v

3
2
Fc

C

−
[
1.54 × 10−7v3

Fc

C2
+ 9646.2Ct20F

] 1
2
)2

. (56)

Let us now consider a superconducting film made
from niobium, characterized by vF = 1.37 × 106 m/s,
T0 = 9.3 K and TF = 6.18×104 K. We also chose C ∼ 100.
With these data, the second coefficient between brack-
ets in equation (55) has a magnitude 104 greater than

Fig. 4. Plot of the transition temperature Tc as defined by
equation (55), taking C ∼ 100 and C ∼ 200. Data are obtained
from references [11,16].

the third coefficient, and since L ranges in the order of
10–100 angstrom, the term due the contribution of gauge
fluctuations is relatively small. From equation (56) we ob-
tain an estimate for the minimal allowed thickness for the
existence of a normal-superconducting phase transition in
Nb films,

L
(0)
C∼100(Nb) ≈ 44 Å. (57)

If we consider C ∼ 200 and T0 = 8.4 K we obtain from
equation (56)

L
(0)
C∼200(Nb) ≈ 80 Å. (58)

In what the behaviour of the critical temperature with
the film thickness is concerned, in Figure 4 we plot equa-
tion (55) for Nb in two cases: (i) for a film (upper curve)
whose the relevant parameters take the values C ∼ 100,
T0 = 9.3 K, and (ii) for a film (lower curve) with C ∼ 200
and T0 = 8.4 K. We see that in both cases we have a good
agreement with the experimental results from respectively
references [11,16].

It should be noticed that the choice of the parameter
C ∼ 100 was done in a heuristic and reasonable manner to
agree with the results of [11], as well as C ∼ 200 which is in
accordance with [16]. In this context, the second example
is more disordered and dirty than the first one, and there-
fore C is relatively greater. Besides, the factor 2 that arose
in the definition of λ in the dirty limit can be understood,
according to [16], due to the decreasing of a factor 2 in the
density of states at the Fermi energy N(0) for disordered
films, and since λ is conversely proportional to N(0), this
factor then appears.

We believe that our approach is an alternative way
to introduce phenomenologically, via the compactified
GL model, corrections that take into account micro-
scopic effects that arise in type-I superconducting films,
such as proximity, localization and an increased residual
resistivity.
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Finally, we remark that the use of the term “minimal
thickness” is constrained to the non-observation of a usual
normal-superconducting phase transition below L(0). It
means that, even in the case e = 0 in equation (52),
the Kosterlitz-Thouless transition is not captured, since
we cannot take into account vortices in our model. How-
ever, the existence of L(0) in this scenario would be inter-
preted as a crossover to the bidimensional case, in which
the Kosterlitz-Thouless transition is kept if vortices are
respected.

5 Conclusions

In this paper we have considered the Ginzburg-Landau
model, confined between two parallel planes, and in the
transverse unitarity gauge, as a model to describe a type-I
superconducting film. To generate the contributions from
gauge fluctuations, we have used the Gaussian effective po-
tential [23–27], which allows to obtain a gap equation that
can be treated with the method of recent developments
[28,29]. We have deduced a critical equation that describes
the changes in the critical temperature Tc due to confine-
ment. Independent contributions from the self interaction
of the scalar field and from the gauge field fluctuations are
found. Our approach suggests a minimal film thickness for
superconducting transitions, with or without the presence
of gauge interactions. This can be clearly seen from equa-
tion (52), where a linear decreasing of the critical temper-
ature with the inverse of film thickness is recovered when
we take e = 0. Even though, with e 
= 0 a line very near
the linear decreasing of Tc with 1/L can be directly ob-
tained from equation (55), because the term due to gauge
effects fluctuations is very small compared to the term
generated from self coupling. Our results are in qualitative
agreement with the behaviour that has been found experi-
mentally in materials containing transition metals, for ex-
ample, in Pb [9], in W-Re alloys [10], in Nb [11,13,15,16],
Mo-Ge [12] and in epitaxial MgB2 films [17]. We would
like to emphasize that the linear character of the decreas-
ing of the transition temperature obtained in this paper,
emerge solely as a topological effect of the compactifica-
tion of the Ginzburg-Landau model in one direction. We
remark that we have calculated a minimal thickness for a
film made from Nb and find that the results are in good
agreement with recent experimental data [11,16]. Finally,
it should be observed that our restriction to work only
with type-I films allows us to analyze the usual normal-
superconducting state transition, and thus we do not con-
sider other universality classes of phase transitions, like
the Kosterlitz-Thouless transition, which is important in
the framework of two-dimensional systems and considers
the unbinding of vortex pairs. This is an important phe-
nomenon and we expect in the future to be able to extend
the present analysis in order to include vortex effects in
quasi-two-dimensional systems.
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4. E. Brézin, D.R. Nelson, A. Thiaville, Phys. Rev. B 31,

7124 (1985)
5. L. Radzihovsky, Phys. Rev. Lett. 74, 4722 (1995)
6. M.A. Moore, T.J. Newman, A.J. Bray, S.-K. Chin, Phys.

Rev. B 58, 936 (1998)
7. C. de Calan, A.P.C. Malbouisson, F.S. Nogueira, Phys.

Rev. B 64, 212502 (2001)
8. L.N. Cooper, Phys. Rev. Lett. 6, 689 (1961)
9. M. Strongin, R.S. Thompson, O.F. Kammerer, J.E. Crow,

Phys. Rev. B 1, 1078 (1970)
10. H. Raffy, R.B. Laibowitz, P. Chaudhari, S. Maekawa, Phys.

Rev. B 28, R6607 (1983)
11. J. Kodama, M. Itoh, H. Hirai, Appl. Phys. 54, 4050 (1983)
12. J.M. Graybeal, M.R. Beasley, Phys. Rev. B 29, 4167

(1984)
13. S.I. Park, T.H. Geballe, Physica B 135, 108 (1985)
14. J. Simonin, Phys. Rev. B 33, 7830 (1986)
15. J.H. Quateman, Phys. Rev. B 34, 1948 (1986)
16. M.S.M. Minhaj, S. Meepagala, J.T. Chen, L.E. Wenger,

Phys. Rev. B 49, 15235 (1994)
17. A.V. Pogrebnyakov, J.M. Redwing, J.E. Jones, X.X. Xi,

S.Y. Xu, Q. Li, V. Vaithyanathan, D.G. Schlom, Appl.
Phys. Lett. 82, 4319 (2003)

18. R. Folk, D.V. Shopova, D.I. Uzunov, Phys. Lett. A
281, 197 (2001); D.V. Shopova, T.P. Todorov, J. Phys.:
Condens. Matter 15, 5783 (2003)

19. L.M. Abreu, A.P.C. Malbouisson, J.M.C. Malbouisson,
A.E. Santana, Phys. Rev. B 67, 212502 (2003)

20. D.P. Young, M. Moldovan, D.D. Craig, P.W. Adams, J.Y.
Chan, Phys. Rev. B 68, 020501(R) (2003)

21. L. Da Rold, C.D. Fosco, A.P.C. Malbouisson, Nucl. Phys.
B 624, 485 (2002)

22. C.D. Fosco, A. Lopez, Nucl. Phys. B 538, 685 (1999)
23. P.M. Stevenson, Phys. Rev. D 30, 1712 (1984); P.M.

Stevenson, Phys. Rev. D 32, 1389 (1985)
24. P.M. Stevenson, I. Roditi, Phys. Rev. D 33, 2305 (1986)
25. I. Roditi, Phys. Lett. B 169, 264 (1986); I. Roditi, Phys.

Lett. B 177, 85 (1986)
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